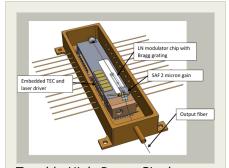
Tunable High-Power Single-Frequency Laser at 2050 nm, Phase II

Completed Technology Project (2015 - 2018)


Project Introduction

We propose a novel new architecture for a low-phase noise electronically tunable laser single-frequency laser at 2.05 microns that meets all the demanding requirements as a seed laser for NASA Lidar applications measuring CO2 densities in the atmosphere. The laser technology is based on previously developed hybrid integration technology that enables the direct optical coupling of active and passive waveguide chips. Array scaling was previously demonstrated for a 4-channel IFOG optical engine and this technology will be applied to the development of the array-scalable tunable laser. The proposed tunable laser can address LIDAR applications at 2.05 microns and can be modified to any wavelength spanning the range of 640-2500 nm.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Gener8, Inc.	Lead Organization	Industry	Sunnyvale, California
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Tunable High-Power Single-Frequency Laser at 2050 nm, Phase II

Table of Contents

Project Introduction Primary U.S. Work Locations	1	
and Key Partners	1	
Project Transitions		
Images	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)	2	
Technology Areas	3	
Target Destinations	3	

Small Business Innovation Research/Small Business Tech Transfer

Tunable High-Power Single-Frequency Laser at 2050 nm, Phase II

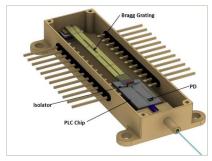
Completed Technology Project (2015 - 2018)

Primary U.S. Work Locations		
California	Virginia	

Project Transitions

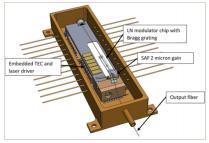
0

May 2015: Project Start



July 2018: Closed out

Closeout Documentation:


• Final Summary Chart(https://techport.nasa.gov/file/140740)

Images

Briefing Chart

Tunable High-Power Single-Frequency Laser at 2050 nm
Briefing Chart
(https://techport.nasa.gov/image/133299)

Final Summary Chart Image

Tunable High-Power Single-Frequency Laser at 2050 nm, Phase II

(https://techport.nasa.gov/imag e/133262)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Gener8, Inc.

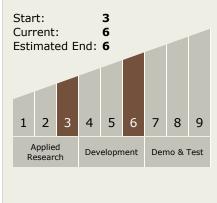
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

William Bischel

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Tunable High-Power Single-Frequency Laser at 2050 nm, Phase II

Completed Technology Project (2015 - 2018)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 TX08.1 Remote Sensing Instruments/Sensors
 - └ TX08.1.5 Lasers

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

